The Oculus

Oculus Latin for “Eye” is a fitting name for our project. With help from Raytheon and SAIC we are putting two image tracking optical imagers inside our satellite. Over 70 students are working on designing and building a satellite that fits inside of a 1m³ envelope for the UN-5 competition. During the 4th week of April we had a critical design review by the AFRL in which we have generated 741 pages of documentation detailing the Oculus.

Glider

The Glider team has a fully constructed and operational High Altitude Autonomous Research Platform, that can be launched from a weather balloon to an altitude of 30,000 ft allowing it to glide over hundreds of miles of terrain. We have tested the flight capabilities from a ground launch using a remote control. The glider is currently being marketed to the Marquette NOAA office as an inexpensive way to gather meteorological data.

Expansion

The aerospace enterprise has grown to include over 100 students this last semester making us the largest enterprise on campus. We now have a dedicated marketing and IT team. We now have majors from almost all departments at MTU.

Spring 08 Team

Donations

Our industry partners and private donations have made our enterprise one of the most successful and rewarding groups on campus. We could not be where we are without the help from the companies shown above. Teamwork is our path to success.

C-9

The Zero Gravity Research team (C-9) is a group of students that apply for the chance to perform Zero Gravity experiments in NASA’s C-9 aircraft, affectionately known as the Vomit Comet. This year’s research project is related to Dr. Brad King’s Ion Space Propulsion research. Here you can see the testing apparatus that will be strapped into the Vomit Comet. Undergraduates are working directly with Jason Makela, one of Dr. King’s graduate students to study the effects of Ion Emitter Tip formation in micro gravity.

Cansat

The CanSat team was founded in December of 2006 to compete in the Annual CanSat competition in Amarillo, Texas; and it is now halfway into its second year. 2008 will see a significant improvement in functionality over the initial prototype, and the team has set their sights not only on taking first place, but on leaving the competition far behind with a design that will not rely on complexity, but will build on a solid base of testing and thorough fore planning.

http://www.aerospace.mtu.edu/ Last updated: April 2008